Regional Manifold Learning for Disease Classification
نویسندگان
چکیده
منابع مشابه
Manifold regularized multitask feature learning for multimodality disease classification.
Multimodality based methods have shown great advantages in classification of Alzheimer's disease (AD) and its prodromal stage, that is, mild cognitive impairment (MCI). Recently, multitask feature selection methods are typically used for joint selection of common features across multiple modalities. However, one disadvantage of existing multimodality based methods is that they ignore the useful...
متن کاملKernel Scaling for Manifold Learning and Classification
Kernel methods play a critical role in many dimensionality reduction algorithms. They are useful in manifold learning, classification, clustering and other machine learning tasks. Setting the kernel’s scale parameter, also referred as the kernel’s bandwidth, highly affects the extracted low-dimensional representation. We propose to set a scale parameter that is tailored to the desired applicati...
متن کاملRegional Manifold Learning for Deformable Registration of Brain MR Images
We propose a method for deformable registration based on learning the manifolds of individual brain regions. Recent publications on registration of medical images advocate the use of manifold learning in order to confine the search space to anatomically plausible deformations. Existing methods construct manifolds based on a single metric over the entire image domain thus frequently miss regiona...
متن کاملManifold Learning-Based Feature Transformation for Phone Classification
This paper investigates approaches for low dimensional speech feature transformation using manifold learning. It has recently been shown that speech sounds may exist on a low dimensional manifold nonlinearly embedded in high dimensional space. A number of techniques have been developed in recent years that attempt to discover the geometric structure of the underlying low dimensional manifold. T...
متن کاملManifold Learning for Medical Image Registration, Segmentation, and Classification
The term manifold learning encompasses a class of machine learning techniques that convert data from a high to lower dimensional representation while respecting the intrinsic geometry of the data. The intuition underlying the use of manifold learning in the context of image analysis is that, while each image may be viewed as a single point in a very high-dimensional space, a set of such points ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Medical Imaging
سال: 2014
ISSN: 0278-0062,1558-254X
DOI: 10.1109/tmi.2014.2305751